The Planar Cell Polarity pathway controls cell rearrangements in the mouse second heart field and is required for heart looping

Paul Palmquist (Imagine-Institut Pasteur, Paris)

25 avril 2024


Infos pratiques

12:00 - 13:00
Salle Rosalind Franklin
Professionnel de recherche
Accès mobilité réduite

In the mouse, disruption of the Planar Cell Polarity (PCP) pathway is associated with congenital heart defects including double outlet right ventricle (DORV). This severe malformation disrupts the double blood circulation because both the aorta and pulmonary artery are connected to the right ventricle. Yet, its embryonic origin has remained unclear. In the fly embryo, the PCP pathway coordinates cells in the plane of epithelia. Inactivation of the core PCP component Vangl2 in the mouse was shown to disrupt elongation of the outflow tract in the embryonic heart tube associated with incomplete heart looping. We now address the mechanisms of heart looping defects in mutants for VANGL2 and its effector SHROOM3. 3D quantifications of heart shape and of cell architecture in the field of heart precursors, suggest that OFT shortening is not the cause of heart looping defects. Our analyses also highlight a novel role of the PCP pathway in modulating cell rearrangements in the heart field epithelium, with no planar polarity of VANGL2. Overall, our work provides novel insights into the role of the PCP pathway during heart morphogenesis relevant to congenital heart defects.

Invited by Suzanne Faure-Dupuy, Alberto De la Iglesia and Hugo Barreto, as part of the Post-doc seminar series.


  • Palmquist-Gomes, P., Ruiz-Villalba, A., Guadix, J.A., Romero, J.P., Bessiéres, B.,
  • MacGrogan, D., Conejo, L., Ortiz, A., Picazo, B., Houyel, L., Gómez-Cabrero, D.,
  • Meilhac, S.M., de la Pompa, J.L. & Pérez-Pomares, J.M. 2023. Origin of congenital
  • coronary arterio-ventricular fistulae from anomalous epicardial and myocardial
  • development. Experimental & Molecular Medicine. doi: 10.1038/s12276-022-00913-x
  • Palmquist-Gomes, P., Marín-Sedeño, E., Ruiz-Villalba, A., Rico-Llanos, G.A., Pérez-
  • Pomares, J.M. & Guadix, J.A. 2022. In Vivo and In Vitro Cartilage Differentiation from
  • Embryonic Epicardial Progenitor Cells. International Journal of Molecular Sciences.
  • 23(7):3614. doi: 10.3390/ijms23073614.
  • Palmquist-Gomes, P., Pérez-Pomares, J.M. & Guadix, J.A. 2021. Training
  • biochemistry students in experimental developmental biology: Induction of cardia bifida
  • formation in the chick embryo. Biochemistry and Molecular Biology Education.
  • 49(5):782-788. doi: 10.1002/bmb.21549.
  • Cano-Ballesteros, S., Palmquist-Gomes, P., Marín-Sedeño, E., Guadix, J.A. & Pérez-
  • Pomares, J.M. 2020. Fsp1 cardiac embryonic expression delineates atrioventricular
  • endocardial cushion, coronary venous and lymphatic valve development. Journal of
  • Anatomy. 238(2):508-514. doi: 10.1111/joa.13306
  • Palmquist-Gomes, P., Pérez-Pomares, J.M. & Guadix, J.A. 2019. Cellular identities in
  • an unusual presentation of cyclopia in a chick embryo. Journal of Experimental Zoology
  • Part B: Molecular and Developmental Evolution. 332(6):179-186. doi:
  • 10.1002/jez.b.22893.
  • Palmquist-Gomes, P., Pérez-Pomares, J.M. & Guadix, J.A. 2019. Proepicardial Origin
  • of Developing Coronary Vessels. Revista Española de Cardiología. S1885-
  • 5857(18)30145-2. doi: 10.1016/j.recesp.2018.01.022.
  • Palmquist-Gomes, P., Guadix, J.A., & Pérez-Pomares, J.M. 2018. Avian embryonic
  • coronary arterio-venous patterning involves the contribution of different endothelial and
  • endocardial cell populations. Developmental dynamics. 247(5), 686-698.
  • doi:10.1002/dvdy.24610.
  • Palmquist-Gomes, P., Guadix, J.A., & Pérez-Pomares, J.M. 2016. A chick embryo
  • cryoinjury model for the study of embryonic organ development and repair.
  • Differentiation, 91(4–5), 72–77. doi: 10.1016/j.diff.2015.10.011.